Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Наполнители — это органические и неорганические вещества в виде порошков (древесная мука, сажа, слюда, Si02, тальк, TiOg, графит), волокон (хлопчатобумажные, стеклянные, асбестовые, полимерные), листов (бумага, ткани из различных волокон, древесный шпон). Их добавляют в количестве 40 - 70 % для повышения механических свойств, снижения стоимости, изменения других параметров.

ПОИСК



Пластмассы

из "Материаловедение "

Наполнители — это органические и неорганические вещества в виде порошков (древесная мука, сажа, слюда, Si02, тальк, TiOg, графит), волокон (хлопчатобумажные, стеклянные, асбестовые, полимерные), листов (бумага, ткани из различных волокон, древесный шпон). Их добавляют в количестве 40 - 70 % для повышения механических свойств, снижения стоимости, изменения других параметров. [c.383]
Стабилизаторы — различные органические вещества, которые вводят в количестве нескольких процентов для сохранения структуры молекул и стабилизации свойств. Под влиянием окружающей среды происходит как разрыв макромолекул на части, так и соединение макромолекул между собой поперечными связями. Изменения исходной структуры макромолекул составляют сущность старения пластмасс, которое необратимо снижает прочность и долговечность изделий. Добавки стабилизаторов замедляют старение. [c.383]
Пластификаторы — вещества, которые уменьшают межмолекуляр-ное взаимодействие и хорошо совмещаются с полимерами. Их добавляют в количестве 10 - 20 % для уменьшения хрупкости и улучшения формуе-мости. Часто пластификаторами служат эфиры, а иногда и полимеры с гибкими молекулами. [c.383]
Специальные добавки — смазочные материалы, красители, добавки для уменьшения статических зарядов и горючести, для защиты от плесени, ускорители и замедлители отверждения и другие — служат для изменения или усиления какого-либо свойства. [c.383]
Отвердители в количестве нескольких процентов добавляют к термореактивным пластмассам для отверждения. При этом между макромолекулами возникают поперечные связи, а молекулы отвердителя встраиваются в общую молекулярную сетку. В качестве отвердителей используют органические перекиси и другие вещества, серу (в резинах). [c.383]
Основой классификации пластмасс служит химический состав полимера. В зависимости от полимера пластмассы разделяют на феноло-формальдегидные (фенопласты), эпоксидные, полиамидные, полиуретановые, стирольные и др. [c.383]
Применение пластмасс как конструкционных материалов, экономически целесообразно. По сравнению с металлами переработка пластмасс менее трудоемка, число операций в несколько раз меньше и отходов получается немного. Пластмассовые детали, как правило, не нуждаются в отделочных операциях. [c.383]
Термопластичные пластмассы (термопласты) в отличие от термореактивных нашли более широкое применение и производятся в больших количествах. [c.384]
Под нагрузкой полимеры ведут себя как вязкоупругие вещества, а их деформация складывается из трех составляющих упругой, высокоэластичной и деформации вязкого течения. Соотношения между составными частями деформации непостоянны и зависят как от структуры полимера, так и от условий деформирования и температуры. [c.384]
Поведение пластмассы под нагрузкой имеет очень сложный характер. Стандартные испытания на растяжение и удар дают приближенную оценку их свойств. Изменения внешних условий и скоростей деформирования, которые совсем не отражаются на механических свойствах металлических сплавов, резко изменяют механические свойства термопластичных полимеров и пластмасс. Чувствительность механических свойств термопластов к скорости деформирования, времени действия нагрузки, температуре, структуре является их типичной особенностью. [c.384]
Стеклообразные термопласты при растяжении, как правило, сильно вытягиваются. При разрыве остаточная деформация составляет десятки и сотни процентов. Эта деформация называется вынужденной высокоэластичной она возникает в результате вытягивания скрученных макромолекул под действием нагрузки. При растяжении материал начинает течь, в образце появляется шейка. Пластическое течение образца на участке тп (рис. 13.15, а) есть не что иное, как постепенное распространение шейки на весь образец. При разрыве образца вынужденная высокоэластичная деформация не падает до нуля, так как в стеклообразном состоянии растянутые макромолекулы не могут скручиваться и сохраняют полученную вытяжку. Чем больше молекулярная масса полимера, тем больше общая деформация перед разрывом. [c.384]
Под нагрузкой в изделиях из термопластов развивается вынужденная высокоэластичная деформация и размеры изделий искажаются. При нагреве выше 20 - 25 °С ускоряется ползучесть, растет остаточная деформация. У термопластов с низкими i r и i p при приближении к этим температурам вообще теряется способность воспринимать нагрузку, например, у поливинилхлорида или полиэтилена это происходит уже при температуре выше 50 °С. [c.385]
Фторопласт-4 является кристаллическим полимером с кр = 327 °С. Несмотря на преобладание в его структуре кристаллов, при 20- 25 °С он склонен к высокоэластичной деформации. Из-за этого приходится уменьшать допустимые напряжения. [c.385]
Для снижения ползучести термопластов вводят наполнители, уменьшают содержание пластификаторов, а иногда применяют специальную обработку деталей для образования поперечных связей между молекулами (в частности, изделия из полиэтилена облучают потоком электронов). [c.385]
В кристаллических полимерах механические свойства зависят от степени кристаллизации. Чем она больше, тем выше прочность и жесткость. У некоторых полимеров при увеличении степени кристаллизации свыше 85 % проявляется хрупкость. [c.386]
Модули упругости термопластичных полимеров и пластмасс в 10 -100 раз меньше, чем у металлов и керамики. Наиболее жесткие полистирол и органическое стекло при 25 °С имеют модули упругости соответственно 3,5 и 3,3 ГПа, а наименее жесткий полиэтилен — всего 1,8 ГПа, да и то при -50 °С. [c.386]
Прочность термопластов находится в пределах 10 - 100 МПа. Этого вполне достаточно для многих целей, несмотря на то, что допускаемые напряжения не превышают 10 МПа. Термопластичные пластмассы хорошо сопротивляются усталости ((T i = 0,2... О, ЗгТв), а долговечность пластмасс выше, чем у многих сталей и сплавов. Однако, когда нагрузка изменяется с частотой выше 20 Гц, пластмассы разрушаются быстро из-за поглощения энергии, разогрева и уменьшения прочности. [c.386]
Механические свойства термопластов ухудшаются под влиянием окружающей среды — под действием света и кислорода воздуха при изменении температуры. Условия атмосферного старения типичны для многих изделий из волокон, пленки, а также массивных изделий. [c.387]
Хорошую стойкость против старения имеет органическое стекло, большинство термопластов также достаточно устойчивы, хотя их прочность и уменьшается. Полиэтилен наименее стоек — за два-три года он сильно разрушается, особенно на солнечном свету под действием ультрафиолетовых лучей. Для замедления старения полиэтилена применяют особые противостарители. Их используют для сохранения естественного цвета и светопрозрачности материала. Добавки сажи (2 - 3 %) также замедляют скорость старения примерно в 30 раз, преобразуя жесткое ультрафиолетовое излучение в неопасное тепловое. [c.387]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте