ПОИСК Статьи Чертежи Таблицы Движения в стационарном потенциальном поле (консервативные и обобщенно консервативные системы) из "Классическая механика " Мы установим сначала, какую форму принимает для таких систем интегральный инвариант Пуанкаре — Картана после этого рассмотрим, как записать для них систему уравнений, вид которой напоминает уравнения Лагранжа или уравнения Гамильтона, но порядок ниже (за счет использования интеграла энергии) далее выясним, как выглядят в этом случае вариационный принцип Гамильтона и уравнение Гамильтона — Якоби и какие возможности открываются для определения полного интеграла этого уравнения. [c.326] Прежде чем приступить ко всему этому, сделаем одно общее замечание. При движении консервативной системы заведомо известен один первый интеграл — интеграл энергии. Это дает возможность понизить порядок системы уравнений на единицу. Но мы уже видели при использовании циклических координат (см. 3 этой главы), что в системе, имеющей г циклических координат, порядок системы уравнений можно понизить на 2л и независимо выписать г квадратур. [c.326] Ранее мы неоднократно обращали внимание читателя на то, что Я (соответственно Е) играет роль импульса для координаты Ь. Естественно возникает мысль, нельзя ли и в случае консервативной системы использовать имеющ1 йся первый интеграл для того, чтобы понизить порядок системы уравнений не на единицу, а на два, и ввести независимую квадратуру. [c.326] Это оказывается возможным, если воспользоваться тем обстоятельством, что лаграь жиан (или гамильтониан) системы не зависит явно от времени, и поэтому из уравнений можно исключить время. Это значит, что роль времени тогда должна играть какая-либо из координат q, например, Qi. В результате интегрирования таких уравнений остальные координаты должны быть выражены как функции этой специально выделенной координаты, а их зависимость от времени вводится затем отдельно при помощи одной квадратуры, определяющей зависимость выделенной координаты 7i от t. Далее будет показано, как, используя этот прием, можно понизить порядок системы дифференциальных уравнений, описывающих движение консервативной и обобщенно консервативной систем, на два и ввести независимую квадратуру. [c.326] Вернуться к основной статье