ПОИСК Статьи Чертежи Таблицы Основные обозначения из "Гидродинамика и теплообмен в псевдоожиженном слое под давлением " Многообразные современные технологические процессы, проводимые в псевдоожиженном слое под давлением, можно разделить на две группы. [c.8] Материал, представленный в главе, нельзя считать исчерпывающим. Дополнительные сведения можно получить в работах [1—6, 22, 27, 34] и из других литературных источников. [c.8] В промышленности в больших количествах вырабатывают и потребляют простейший из эпоксидов -—окись этилена. Окисление этилена, исходного сырья для получения этиленгликоля, растворителей, пластмасс и других химических продуктов, осуш,ествляется кислородом воздуха на серебряном катализаторе. Процесс окисления ведется под давлением 0,9—2,0 МПа при температуре 260—290 °С, если окислитель воздух, и при 230 °С, если окислитель кислород. Интенсивный отвод реакционного тепла в этом процессе весьма важен, так как при температуре выше 300 °С ускоряется реакция полного окисления этилена до двуокиси углерода и воды. Возможность эффективного съема тепла, образующегося при реакции, является одним из самых сложных вопросов при промышленном осуществлении процесса. [c.9] Процесс проводят под давлением в две ступени. Смесь этилена и воздуха нагнетается в контактный аппарат первой ступени, где до 50% этилена превращаея -ся в окись этилена. В нижней части контактного аппарата помещены трубы, охлаждаемые высокотемпературным теплоносителем, циркулирующим в межтрубном пространстве. Над трубами расположены охлаждающие элементы,-а еще выше — фильтры из пористой окиси алюминия. Трубное пространство нижнего охлаждающего элемента заполняется мелкозернистым серебряным катализатором, который в процессе работы находится в псев-доожиженном состоянии. После фильтрации газов смесь охлаждается в холодильнике и поступает в абсорбер для извлечения окиси этилена. [c.9] Одним из самых перспективных мономеров является акрилонитрил. В основе его получения лежит каталитическая реакция кислорода и пропилена. [c.10] На рис. 1.2 показана краткая технологическая схема этого процесса. Исходные реагенты подают в контактный аппарат 1 приблизительно в стехиометрических соотношениях в реакционной зоне поддерживают давление 0,15—0,2 МПа и температуру 400—500 °С. Время контакта несколько секунд. [c.11] Одним из главных методов получения водорода и его смесей с азотом или окисью углерода, которые используются для синтеза аммиака и других продуктов, является каталитическая конверсия метана и его гомологов. На рис. 1.4 изображен полупромышленный контактный аппарат е внутренним диаметром 700 мм, в котором осуществляется парокислородная конверсия метана в псевдо-ожиженном слое катализатора под давлением до 2 МПа. [c.13] В СВЯЗИ с ограниченностью запасов нефти большое внимание уделяется таким проблемам, как газификация угля, пиролиз, гидрогенизация и жидкостная экстракция угля. [c.15] Значительные успехи в разработке некоторых из этих проблем позволяют надеяться, что производство и использование синтетических топлив получат широкое рас-пространение. Вместе с тем совершенствуются методы прямого сжигания угля. [c.15] Принципиально новым технологическим решением при производстве электроэнергии и тепла стало сжигание твердого топлива в псевдоожиженном слое при температурах до 900—950 °С с размещением в топочной камере теплообменных поверхностей. При этом комплексно решаются проблемы снижения вредных выбросов в окружающую среду, уменьшения габаритов й металлоемкости котлоагрегатов, повышения их эксплуатационной надежности без предъявления высоких требований к качеству топлива. [c.15] Дальнейшим развитием метода сжигания твердого топлива в псевдоожиженном слое будет создание котлов, работающих при повышенном давлении в топочной камере и предназначенных для комбинированных парогазовых установок. [c.15] Известно, что газовые турбины требуют высококачественного топлива. Попытки использовать для них уголь оставались безуспешными из-за появления отложений солей щелочных металлов и абразивного действия золы на лопатки турбины. С развитием технологии низкотемпературного сжигания твердого топлива в псевдоожиженном слое стало возможным применение для газотурбинных установок (ГТУ) различных сортов углей. Это связано прежде всего с тем, что при сжигании топлива в псевдоожиженном слое в золе остается значительная часть солей щелочных металлов, а продукты сгорания после соответствующей очистки в двух-трех последовательно включенных циклонах не вызывают эрозии и коррозии лопаток турбины. [c.15] Повышение давления в топке до 0,6—1 МПа не только интенсифицирует процессы горения и теплообмена, но и расширяет возможность снижения выбросов окислов азота и серы. [c.15] Следует заметить, что для разработки и внедрения котлоагрегатов с псевдоожиженным слоем под давлением требуется больше времени, чем для топочных устройств атмосферного типа. Наибольшую сложность представляет очистка горячих газов от твердых частиц до уровня, приемлемого для газовых турбин. Наряду с электрофильтрами для этого предлагается использовать циклоны и рукавные фильтры. Известные трудности возникают при вводе топлива и серопоглощающей присадки в топочную камеру и выводе шлаков и продуктов реакции присадки с двуокисью серы, а также при создании крупной камеры сгорания применительно к энергетической установке большой единичной мощности. [c.16] Топки с псевдоожиженным слоем под давлением могут применяться на ТЭС в комбинированном цикле производства электроэнергии, который по сравнению с традиционным дает преимущество в эффективности использования угля и тепла с большими возможностями по обеспечению требований к защите окружающей среды. Термодинамический к.п.д. таких установок увеличивается с ростом температуры поступающих в газовую турбину газов и повышением доли газотурбинной части в суммарной мощности установки. [c.16] Разработано несколько проектов установок различной мощности с парогазовым циклом. Предполагается, что. 80% мощности будет вырабатываться паровой турбиной, а 20% — газовой [8, 9]. [c.16] На рис. 1.8, а показана одна из схем включения котлоагрегатов с псевдоожиженным слоем в ПГУ [7]. [c.18] Рассмотрим некоторые проекты котлоагрегатов с псевдоожиЖенным слоем под давлением, предназначенных для газотурбинных установок. [c.19] Положительные результаты, полученные на опытнЬй установке в Англии в лабораториях B URA, послужили основой при разработке котла с псевдоожиженным слоем для ПГУ мощностью 140 МВт. Котел работает в блоке с паровой турбиной мощностью 120 МВт и выполнен в виде горизонтального цилиндра диаметром 7,94 м, в котором заключен псевдоожиженный слой под давлением 0,82 МПа-. При размере частиц сжигаемого топлива до 1,6 мм и скорости фильтрации и=0,61 м/с псевдоожиженный слой занимает площадь 83,5 м в то время как для котлоагрегата равной мощности при атмосферном давлении, скорости фильтрации =2,44 м/с и размере частиц сжигаемого топлива до 3,2 мм площадь псевдо-ожиженного слоя составляет 186 м. [c.19] Особенностью проекта является использование выпускаемых серийно паровой и газовой турбин, а также вспомогательного оборудован ия. [c.19] Вернуться к основной статье