ПОИСК Статьи Чертежи Таблицы Прочность при растяжении из "Промышленные полимерные композиционные материалы " Укладка непрерывных волокон в направлении действия силы позволяет полностью реализовать повышенные механические показатели таких материалов, как стекло, углерод, бор, которые в форме волокон относятся к наиболее прочным из известных материалов. Многие композиционные материалы, полученные таким способом, обладают очень высокими показателями, требуемыми, например, в аэрокосмической технике, где вопросы стоимости не являются первостепенными. Стеклопластики остаются важнейшими конструкционными композиционными материалами и находят чрезвычайно широкое применение в строительстве, судостроении (легком и тяжелом), самолето- и автомобилестроении, химической промышленности, в быту. [c.108] Стеклянные волокна в качестве армирующего наполнителя обладают двумя существенными недостатками — имеют низкую жесткость, что требует усиления элементов конструкций из стеклопластиков и препятствует полной реализации прочности волокон, и теряют прочность при контакте с водой. Углеродные и борные волокна значительно более жесткие, а поскольку по прочности они не уступают лучшим стеклянным волокнам, напряжения, которые выдерживают материалы на их основе, значительно выше, чем в случае стеклопластиков при меньших допустимых деформациях. Эти волокна, также как и стеклянные, производятся непрерывными способами и технология производства изделий из материалов на их основе только незначительно отличается от технологии изготовления изделий из стеклопластиков. Еще одним типом волокон, которые могут рассматриваться как серьезный конкурент перечисленным трем типам волокон, являются волокна из ароматических полиамидов типа Кевлар 49 фирмы Дюпон . Хотя эти волокна являются сравнительно новыми, они нашли широкое применение в производстве высоконагруженных элементов, в том числе в аэрокосмической технике в качестве самостоятельного армирующего наполнителя или в комбинации с другими волокнами, в частности углеродными, для производства гибридных материалов. Сравнительные свойства ряда важнейших типов армирующих волокон приведены в табл. 2.4. [c.108] если неэффективная длина волокон очень мала, а разброс прочности волокон велик, из теории наиболее слабых связей можно сделать вывод, что прочность композиционного материала может быть больше, чем рассчитанная по правилу смеси с использованием средней прочности волокон, определенной при обычной длине между зажимами [91]. Для карбопластиков, однако, было установлено [99], что их реальная прочность ниже, чем рассчитанная экстраполяцией прочности волокон к очень короткому расстоянию между зажимами с использованием модели невзаимодействующих жгутов волокон. Это свидетельствует о том, что в исследованных материалах наблюдается значительное взаимодействие между разрывами отдельных волокон. В табл. 2.5 приведены типичные показатели прочности некоторых экспериментальных и промышленных композиционных материалов с непрерывными волокнами. [c.114] Авторы работы [99] показали, однако, что в настоящее время ни один из существующих критериев разрушения, представляющий собой комбинацию напряжений, не может быть принят ни для одного композиционного материала без предварительной экспериментальной проверки. [c.116] Вернуться к основной статье