ПОИСК Статьи Чертежи Таблицы Первичные полимерные непрерывные фазы из "Промышленные полимерные композиционные материалы " Волнистые листовые материалы кресла, лодки, автомобили, сосуды и трубы элементы летательных аппаратов и др. [c.22] В производстве таких материалов используют спиртовые или в отдельных случаях водные растворы смол для пропитки второй непрерывной фазы (наполнителя). Прессованием при повышенной температуре получают однородные и прочные листы (см. [3] дополнительного списка литературы). Наиболее широкое применение эти материалы находят в производстве высоковольтной изоляции, зубчатых колес, подшипников с водяной смазкой, декоративных пластиков для облицовки столов и стен. Другим интересным и специфическим применением фенольных смол является производство пенопластов. Фенопенопласты имеют более высокую хрупкость и стоимость, чем, например, пенополистирол или жесткие пенополиуретаны, однако они обладают существенными преимуществами— самозатухающими свойствами и низкой токсичностью продуктов горения. [c.24] Кремнийорганические смолы в промышленности получают гидролизом смесей хлорсиланов. В основную цепь макромолекулы входят силоксановые связи. Это довольно дорогие смолы, однако по ряду свойств в отвержденном состоянии, таких как кратковременная устойчивость при температуре в интервале 250—500°С и высокие показатели электроизоляционных свойств стеклотексто-литов на их основе они превосходят материалы на основе феноло-и меламиноформальдегидных смол (см. [5] дополнительного списка литературы). Пресс-порошки на основе кремнийорганических смол, стеклянных или асбестовых волокон и соответствующих катализаторов производят в промышленности в небольших количествах и они дороже даже фторопластов. Долго не могли найти доступной полимерной матрицы, длительно работающей в температурном интервале 150—250 °С (промежуточной между эпоксидными полимерами и полиимидами), которая сочетала бы различные свойства при умеренной стоимости. До некоторой степени ряд полимеров, полученных реакцией Фриделя — Крафтса и имеющих структуру, промежуточную между полифениленами и фенольными смолами, удовлетворяют этим требованиям и начинают широко использоваться в производстве композиционных материалов. [c.25] В [6] дополнительного списка литературы приводятся также данные об улучшении некоторых других свойств термопластов при их наполнении. В табл. 1.2 перечислено большинство технически важных термопластов с указанием типичных наполнителей и свойств, которые улучшаются при наполнении. Полиамид 66 является хорошим примером термопласта, практически все свойства которого улучшаются при введении 20—40% стеклянного волокна. Особенно резко возрастают модуль упругости, прочность при растяжении, твердость, устойчивость к ползучести, теплостойкость при изгибе. Термический коэффициент линейного расширения также уменьшается, причем особенно резко в направлении ориентации волокон и становится соизмерим с соответствующими коэффициентами для меди, алюминия, цинка, бронзы и т. п. (В [7] дополнительного списка литературы приведены данные о всех свойствах наполненного и ненаполненного стеклянным волокном полиамида 66). Наполнение полиамидов 30—40% стеклянных микросфер в 8 раз повышает их прочность при сжатии при одновременном возрастании модуля упругости и прочности при растяжении. Эти материалы обладают лучшими технологическими свойствами по сравнению с полиамидами, наполненными стеклянным волокном. Кроме того стеклосферы не разрушаются в процессе переработки. На другие термопласты, такие как полистирол, сополимеры стирола и акри-лонитрила, поликарбонат наполнители оказывают менее упрочняющее влияние по сравнению с полиамидами. [c.26] Примечания. 1. Армирующие волокнистые наполнители используются также с другими типами каучуков. [c.29] Вернуться к основной статье