ПОИСК Статьи Чертежи Таблицы Использование композитов в космических аппаратах из "Справочник по композиционным материалам Книга 2 " Композиты для использования в космосе и космических аппаратах разрабатывались как НАСА, так и министерством обороны США. Последним примером такой разработки могут служить дверцы приборного отсека орбитальной ступени космического корабля Шаттл . Эти детали представляют собой наибольшие сборные конструкции из композита шириной 3,7 м и длиной 18,3 м. Снижение массы конструкций является важнейшей задачей при применении КМ в космической технике, чем и объясняется быстрое увеличение объемов использования композитов в этой области. Другими особыми свойствами композитов для космических аппаратов являются регулируемый термический коэффициент линейного расширения, низкотемпературная стабильность, возможность расчета нагрузок и высокая удельная жесткость. В случае применения в космической технике КУС желательно использовать в виде сверхтонких слоев толщиной 0,025 мм и обеспечить создание таким образом оптимальных структур для солнечных батарей большой площади. Несомненно, что это станет реальностью в ближайшем будущем. [c.557] Композитные трубчатые структуры с почти нулевым термическим коэффициентом линейного расширения были изготовлены фирмой Грумман для большого космического телескопа. Композиты были успешно использованы также для прецизионных креплений, оптических скамей и электромагнитных антенн. Конструкции для будущих космических применений будут, очевидно, изготовляться на основе КУС. [c.557] УФ-излучения. В табл. 28.7 приведена характеристика композитов, удовлетворяющих строгим требованиям НАСА к космическим материалам [И]. В основном, как было обнаружено, нестабильными оказались сложные полиэфиры, в то время как эпоксиды и некоторые виды полиимидов удовлетворяли строгим требованиям эксплуатации в космосе. Один состав на основе фенольных смол также оказался приемлемым. Большинство термопластов (как со стекловолокном, так и без него) по результатам испытаний также удовлетворяли этим требованиям. [c.559] Некоторое количество емкостей, полученных намоткой волокна, было изготовлено для хранения сжатых газов и успешно использовалось во всех лунных экспедициях. Для применения в будущем НАСА рекомендует использовать для изготовления конструкций намоткой арамидные нити ( Кевлар 49 ). Эти волокна — самые легкие из неметаллических волокон и обеспечивают наиболее высокую удельную прочность на растяжение. Поскольку эти волокна не самоистирающиеся, они также обеспечивают сохранение прочности до переработки и после технологического процесса получения изделий. Они также обладают более однородными свойствами по сравнению с характеристиками углеродных и стеклянных волокон. [c.559] Основная идея конструкции панели из композита с сетчатой системой придания жесткости заключается в использовании относительно тонкой оболочки, армированной сеткой из ребер жесткости таким образом, что панель изготовляется целиком, без нарушения конструкционной стабильности (устойчивости) или возникновения перегрузки. Целесообразность использования эпоксиуглепластика при разработке таких панелей заключается в том, что СП-оболочка может иметь преимущественные направления по жесткости и твердости, а ребра жесткости могут быть сконструированы таким образом, чтобы оказаться конструктивно весьма эффективными благодаря использованию высокой доли одноосноориентированных волокон. [c.560] Описанные выше специфические панели из эпоксиуглепластика с сеткой представляют собой часть относительно большой конструкции оболочки из эпоксиуглепластика, входящей в конструкцию космического корабля. Конструкция такой оболочки (рис. 28.12) имеет высоту около 4 м и диаметр 3,7 м и была разработана с таким расчетом, чтобы выдерживать нагрузки, соответствующие ожидаемым для орбитальной ступени космического корабля Шаттл . Детальная разработка сетчатой структуры ее описана Лагером 113]. Основной чертой такой разработки является возможность изготовления конструктивных панелей низкой стоимости, дающих преимущество на стадии производства, при которой первоначальная стоимость оснастки может быть распределена в виде амортизационных отчислений на большое количество панелей. Наиболее новой частью этой системы является метод изготовления тканевых сетчатых заготовок для ребер жесткости на основе стекловолокна, пенопластов и их проклейки. Производство таких деталей в виде больших форм — заготовок приводит к сокращению времени изготовления каждой детали. [c.560] Кромки ребер жесткости сетчатых панелей вырезали из СП, состоящего из восьми слоев неориентированного эпоксиуглепластика и трех слоев стеклоткани типа 112. Подверженное сдвиговым усилиям, связывающее тканевое соединение кромки ребер жесткости с поверхностью панелей состоит из легкой полиуретановой пены с СП на основе стеклоткани. После изготовления образцы панелей помещают в соответствующую раму для создания сдвигового усилия и нагружают вплоть до разрушения. Усилие разрушения соответствует сдвигу плоской кромки при 960 Н/см, что существенно выше уровня реальной нагрузки для конструкции. [c.561] Вернуться к основной статье