ПОИСК Статьи Чертежи Таблицы Многоатомные газы (классическая теория) Закон равнораспределения из "Термодинамика, статическая физика и кинетика Изд.2 " Множитель V в этой формуле возникает в результате интегрирования по координатам центра инерции молекулы, а постоянный и безразмерный множитель В — в результате интегрирования по углам, определяющим ориентацию молекулы в пространстве. [c.212] Полученный результат можно сформулировать в виде так называемого закона равнораспределения энергии по степеням свободы. Каждая поступательная и вращательная степень свободы вносит во внутреннюю энергию одного моля газа слагаемое ЫаТИ и в молярную теплоемкость слагаемое ЫаИ , каждая колебательная степень свободы вносит вклад вдвое больший, т. е. МаТ ъ выражение внутренней энергии и в выражение теплоемкости. [c.212] Таким образом, все виды движения в молекуле с точки зрения классической физики равноправны (вдвое больший вклад колебательных степеней свободы объясняется тем, что колебания связаны с наличием потенциальной энергии, в среднем равной кинетической энергии колебаний, в то время как поступательное и вращательное движения связаны с наличием только кинетической энергии). В частности, для одноатомных газов классическая теория предсказывает значения Су = = (3/2) Ыа, Ср = (5/2) Ма, у = 5/3. На первый взгляд могло бы показаться, что для одноатомных газов эксперимент подтверждает эти предсказания измеренные теплоемкости этих газов действительно близки к (3/2) Ма. [c.212] Однако это согласие с опытом является лишь иллюзорным, фактически существует разительное противоречие между предсказаниями классической теории и результатами измерений. Дело в том, что атомы отнюдь не являются материальными точками с тремя степенями свободы, а состоят из ядра, построенного из нуклонов, и электронной оболочки. Поэтому фактическое число степеней свободы атома равно 3(2 + А) (Z — порядковый номер и А — число нуклонов в ядре). Однако измеренная теплоемкость одноатомных газов близка к (3/2) NJ. Это свидетельствует лишь о том, что в противоречии с законами классической физики электронные и внутриядерные степени свободы не вносят свой вклад в теплоемкость, являются замороженными . С аналогичной ситуацией мы сталкиваемся и в случае многоатомных газов. Например, для двухатомных газов, если игнорировать электронные и внутриядерные степени свободы, закон равнораспределения предсказывает значение Сг, одинаковое для всех газов и равное (7/2) NJ, откуда Ср = (9/2) и у = 9/7. На опыте же оказывается, что при умеренных температурах для всех двухатомных газов Ср = (5/2) NA, Ср = = (7/2) NA и у = 7 / 5. С понижением температуры Ср уменьшается и для Н2 и 02 достигает значения (3/2) NA. Для остальных газов это значение не достигается, так как еще до этого происходит сжижение. Наоборот, с повышением температуры теплоемкость увеличивается, однако теоретическое значение теплоемкости Ср = (7/2) не достигается, так как наступает диссоциация молекул газа на атомы. [c.213] Причину этого расхождения между экспериментом и предсказаниями классической теории мы рассмотрим в 46 и 47 и убедимся, что в теории, учитывающей квантование энергии, это противоречие исчезает. [c.213] Закон равнораспределения энергии по степеням свободы можно сформулировать не для энергии одного моля газа, а для средней энергии одной молекулы. Каждая вращательная и поступательная степень свободы вносит в среднюю энергию молекулы вклад 7У2, а каждая колебательная степень свободы — вклад Т. Преимущество такой формулировки заключается в том, что ее можно применить не только к идеальному классическому газу, состоящему из молекул, но и к отдельным, не взаимодействующим друг с другом объектам со сложной внутренней структурой, рассматривая каждый такой объект как молекулу. Например, в 52 мы воспользуемся таким приемом для классического рассмотрения светового излучения, а в 53 мы применим его для классического рассмотрения теплоемкости кристаллов. [c.214] Вернуться к основной статье