ПОИСК Статьи Чертежи Таблицы Задачи термомеханики тел переменного состава Наумов) из "Машиностроение Энциклопедия Т I-3 Кн 1 " испытывающие присоединение или удаление частиц, называют телами переменного состава. Этот термин следует считать заимствованным из классической механики тел переменной массы, где он имеет более узкое содержание, поскольку деформированность тел там не рассматривается. Задачи, возникающие при математическом моделировании термонапряженного состояния таких деталей и элементов конструкций, относят задачам термомеханики тел переменного состава. [c.190] С точки зрения построения математической модели процессов термомеханического нагружения растущих тел основной интерес представляет случай непрерывного наращивания. Это связано с тем, что такие процессы, как, например, температурное напыление керамики или намотка тонких слоев и нитей на оправку, осуществляются путем присоединения бесконечно малых масс материала за каждый бесконечно малый промежуток времени. Кроме того, некоторые процессы дискретного наращивания, например послойное намоноличивание гидротехнических сооружений с помощью технологии укатанного бетона, допускают аппроксимадаю соответствующим непрерьшным процессом. Актуальность исследования процессов непрерывного наращивания определяется также тем обстоятельством, что при математическом моделировании таких процессов возникают постановки задач, принципиально отличающиеся от задач механики тел постоянного состава. Теоретический анализ указанного круга задач составляет предмет механики растущих тел, основные представления которой изложены в монографии 1] (там же приведены постановки и решения некоторых модельных задач, а также дополнительная библиография). [c.191] В технологических процессах наращивания предусматривается специальная подготовка материала, предназначенного для нанесения на субстрат, а непосредственно процесс нанесения часто осуществляют путем интенсивного температурного воздействия на наносимый материал. Например, в процессах плазменного напыления мелкодисперсные частицы материала расплавляются в струе высокотемпературной плазмы. Технологические операции намотки осуществляют, как правило, с применением пластифицированного связующего при отверждении которого протекают различные физико-химические процессы, связанные с теплообменом. Аналогичным образом, процесс твердения бетона при намоно-личивании массивных конструкций сопровождается выделением значительного количества тепла, обусловленного реакциями гидратации цемента. Это означает, что при построении теоретических моделей процессов наращивания указанного типа необходимо учитывать теплообмен между приращиваемыми элементами и наращиваемым телом, а также тепловыделение, протекающее в теле при изменениях структурного состояния материала. [c.191] Формоизменение наращиваемого тела (т.е. изменение его геометрической формы) имеет два существенно различных аспекта. С одной стороны, это деформация, вызванная действием приложенных к телу поверхностных и объемных термосиловых нагрузок, с другой стороны, это изменение формы вследствие неравномерного притока материала к разным участкам внешней поверхности тела. Термин деформация применительно к растущему телу имеет обычное для механики сплошной среды содержание, но отражает только первый из указанных аспектов. Второй аспект, в принципе никак не связанный с первым, служит характерным признаком наращиваемого тела. Вводимое при формулировке геометрически линейных задач механики растущих тел предположение о малости деформаций не накладывает никаких ограничений на формообразование рассматриваемого тела вследствие наращивания. [c.191] С точки зрения кинематики конечных деформаций отличие наращивания тела от тел постоянного состава состоит в том, что для него невозможно зафиксировать какую-либо единую отсчетную конфигурацию частиц, по отношению к которой имело бы смысл говорить об изменении полевых величин (перемещений, деформаций и др.), определяющих состояние наращиваемого тела. Действительно, поскольку тело в процессе наращивания непрерывно пополняется новыми элементами, то произвольно выбранный элемеггт его не имеет прообраза ни в одной из конфигураций тела в моменты времени, предшествующие моменту присоединения рассматриваемого элемеггга. Кроме того, так как различные частицы могут присоединяться к телу в одной и той же точке пространства (имеется в виду случай конечных деформаций), для наращиваемого тела невозможно ввести корректное определение вектора перемещения. [c.191] При построении математической модели наращиваемого тела важно использовать определяющие соотношения (уравнении состояния), учитывающие характерные особенности процесса наращивания - скорость и последовательность присоединения частиц. Указанные параметры определяют специфическую возрастную неоднородность наращиваемого тела, обусловленную неодновременностью зарождения и приращивания частиц. При моделировании ряда реальных технологических процессов учет возрастания неоднородности весьма существен, поскольку физико-механические свойства частиц в момент присоединения могут значительно отличаться от свойств этих же частиц игустя некоторое время, определяемое темпом старения и условиями возможных структурных трансформаций материала. В монографии [2] изложены определяющие соотношения неоднородно стареющих вязкоупругих тел, которые отвечают упомянутым требованиям. [c.192] Таким образом, основные отличия математической формулировки начально-краевой задачи для наращиваемого тела от классических постановок задач в механике деформируемого твердого тела состоят, во-первых, в отказе от условий совместности полных деформаций, во-вторых, в особых граничных условиях на поверхности наращивания и, в-третьих, в определяющих соотношениях, которые должны учитывать возрастную неоднородность наращивания тела (это последнее обстоятельство не имеет решающего значения, поскольку общая модель растущего тела не накладывает принципиальных ограничений на вид используемых определяющих соотношений). [c.192] В задачах термомеханики растущих тел закон движения поверхности наращивания в общем случае определяется из системы соотношений, описывающих тепломассообмен тела с окружающей средой. Это особенно акту ально по отношению к тем случаям, когда наращивание осуществляется за счет фронтального фазового перехода типа жидкость - твердое тело . В задачах, включающих, помимо анализа напряженно-деформированного состояния растущего тела, определение кинетики фронта фазового превращения, первостепенное значение приобретает учет термомеханической связанности, т.е. [c.192] Вариационные принципы, эквивалентные постановкам задачи в дифференциальной форме, удобно использовать для получения решений краевых задач методами Ритца, конечных элементов, другими численными методами [21]. Поскольку в функционалах содержатся производные более низкого порядка, чем в соответствующих дифференциальных уравнениях, это допускает использование для нахождения решения менее гладких фзгнкций. [c.192] Для квазистатической теории линейной вязкоупругости сформулируем вариационный принцип, являющийся обобщением принципа, предложенного Гертином [51, 111]. [c.192] Вернуться к основной статье