ПОИСК Статьи Чертежи Таблицы Микроскопические состояния и гипотеза, о молекулярном хаосе из "Элементы статистической механики, термодинамики и кинетики " Прежде всего общим свойством всех макроскопических объектов является то, что составляющие их частицы находятся в непрерывном движении. Правда, характер этого движения и законы, которые им управляют, как будто совершенно различны в различных объектах. В газах, например, молекулы свободно движутся по всему объему, лишь относительно изредка сталкиваясь друг с другом. В твердых телах атомы, напротив, сильно связаны между собой и могут лишь слегка колебаться около положений равновесия. Еще более могучим является обменное взаимодействие между электронами в металле, но оно совсем не похоже на взаимодействие между молекулами газа или атомами твердого тела. Оказывается, однако, что существует одна общая черта, одинаково характерная для всех этих разных движений их хаотичность. [c.13] Чтобы понять точный смысл этого утверждения, нужно познакомиться с микроскопическим способом описания состояний макроскопических систем. Будем считать для простоты, что частицы, входящие в состав таких систем, суть материальные точки. Тогда состояние каждой частицы будет определяться заданием ее положения г и импульса р - А состояние системы N таких частиц будет описываться множеством 2М векторов г , р, , I = 1, 2,. .., N. Состояние системы, описанное таким предельно подробным образом, назьшают микроскопическим. [c.13] Так как частицы движутся, их координаты и импульсы меняются, и это значит, что микроскопическое состояние системы постоянно изменяется. И хаотичность теплового движения заключается в том, что в изолированной системе на достаточно больших интервалах времени это изменение оказывается совершенно случайным. Оказывается, что, в каком бы микросостоянии в данный момент система ни находилась, через некоторое время она может с равной вероятностью оказаться в любом возможном микроскопическом состоянии. Это значит, что, если подождать достаточно долго, изолированная система проведет равную долю времени во всех возможных микросостояниях. [c.13] Возможность или невозможность микросостояния определяется при этом теми внешними условиями, в которых система находится. Для изолированной системы все сводится, в сущности, к единственному требованию постоянства ее внутренней энергии возможными (и потому равноправными) оказываются те микросостояния, которые соответствуют заданной величине внутренней энергии, а невозможными—все остальные. Сохранение же, например, нулевого значения полного импульса системы (или полного момента импульса) в системе отсчета, связанной с ее центром масс, по существу, автоматически обеспечивается хаотичностью движения. [c.14] Если система не изолирована, ее возможные микросостояния могут характеризоваться разными значениями энергии и уже не будут равновероятными. Равноправие сохраняется в этом случае лишь внутри каждой группы микросостояний, характеризующихся одной и той же полной энергией. [c.14] Более или менее ясно, что такая хаотичность микроскопического движения, приводящая к потере памяти на больших интервалах времени, связана с тем, что в природе не бывает совершенно изолированных систем, и, как бы мы ни старались, по-видимому, в принципе невозможно изолировать систему от всего на свете. Однако никому еще толком не удалось показать, каким образом эта хаотичность вытекает из других фундаментальных законов природы. Поэтому утверждение о хаотичности микроскопического движения нужно рассматривать как гипотезу, и возможно, что в каких-то микроскопических деталях она не совсем точна. Однако все ее макроскопические следствия оказываются в прекрасном согласии с экспериментальными фактами. Мы будем называть эту гипотезу гипотезой о молекулярном хаосе. [c.14] Этими почти независимыми подсистемами могут быть, например, отдельные частицы. Тогда мы имеем дело с обычным газом. В твердых телах независимыми являются не сами атомы, которые сильно связаны друг с другом, а их колебания около положений равновесия. В более сложных ситуациях приходится прибегать к более изощренным представлениям, чтобы выделить независимо движущиеся части макроскопических систем. Но если гипотеза о молекулярном хаосе работает, такие почти независимые подсистемы непременно должны существовать. [c.15] Зная координаты и импульсы частиц, мы можем вычислить значение любой механической величины, имеющей смысл для данного микросостояния. Разделив, например, квадрат импульса частицы на ее удвоенную массу, мы получим величину ее кинетической энергии. Просуммировав зависящие от положения частиц силы их взаимодействия с мембраной манометра и отнеся полученную силу к единице площади, найдем величину давления. Мы можем найти полную энергию какой-то группы частиц, сложив их кинетические энергии с потенциальной энергией их взаимодействия, определяемой их взаимным расположением Пересчитав частицы, находяпщеся в небольшом объеме в окрестности интересзчощей нас точки, определим плотность числа частиц в этой точке. И так далее. [c.15] Полученные таким образом числа будут меняться вместе с изменением микросостояния, т.е. очень быстро. Их называют поэтому. мгновенными значениями соответствующих величин мгнешенным значением энергии, давления, плотности и т.д. [c.15] Вернуться к основной статье