ПОИСК Статьи Чертежи Таблицы Общие приемы построения линии пересечения поверхности плоскостью и построения разверток из "Начертательная геометрия и черчение " Форму деталей часто образуют срезом или вырезом части материала плоскостями из исходных тел — заготовок, ограниченных криволинейными поверхностями. При этом возникает необходимость построения на чертеже проекций линии пересечения поверхности плоскостью. Такие же линии строят на чертежах деталей, поверхности которых ограничены пересекающимися между собой участками плоскости и поверхности (например, см. 13.23). [c.108] В случае пересечения линейчатой поверхности плоскостью линия пересечения может быть кривой или прямой. [c.108] Для построения линии пересечения линейчатой поверхности плоскостью в общем случае строят точки пересечения прямолинейных образующих поверхности с секущей плоскостью, т. е. находят точки пересечения прямой с плоскостью. Искомую кривую проводят через эти точки. Примеры таких построений см. на рисунках 9.4, 9.8. [c.108] Для построения линии пересечения линейчатой поверхности с плоскостью в общем случае применяют вспомогательные секущие плоскости. Точки искомой линии определяются в пересечении линий, по которым вспомогательные секущие плоскости пересекают данные поверхность и плоскость. Примеры применения вспомогательных плоскостей рассмотрены ниже. Применение вспомогательной плоскости для построения линии пересечения двух плоскостей показано на рисунке 4.9. [c.108] При подборе вспомогательных плоскостей надо стремиться к упрощению построений. [c.108] Построения разверток. При построении разверток криволинейных поверхностей их поверхность уподобляют гибкой нерастяжимой пленке. Получение развертки криволинейной поверхности может бьпь представлено как результат последовательного совмещения с плоскостью бесконечно малых элементов поверхности, образованных взаимно параллельными или пересекающимися прямолинейными образующими. Три поверхности можно рассматривать как состоящие из таких элементов — цилиндрическую, коническую и с ребром возврата, только они и являются развертываемыми. [c.109] Поверхность и ее развертку можно рассматривать как две геометрические фигуры, между точками которых установлено взаимно однозначное соответствие. При развертывании (и свертывании) поверхности непрерывность поверхности не наруща-ется, не изменяется расстояние на поверхности между точками поверхности и соответственно длина отрезков линий, углы между пересекающимися линиями в точках их пересечения и величины площадей фигур на поверхностях. [c.109] Практически чертеж развертки выполняют, ограничиваясь представлением отдельных криволинейных элементов поверхности ее плоскими элементами. Способы развертки гранных поверхностей — способ треугольников и способ нормального сечения — рассмотрены выще (см. рис. 6.15, 6.16, 6.17). Примеры применения указанных способов при развертке кривых поверхностей рассматриваются ниже (см. рис. 9.5, 9.9). [c.109] Вернуться к основной статье